

Thickness dependence of critical Currents in CC: microstructure or pinning size effects?

Alex Gurevich

University of Wisconsin

Applied Superconductivity Center

Madison, WI

Wire Development Workshop

St. Petersburg, FL, Jan 21, 2003

MOTIVATION

S. Foltyn et al.

- Can pinning provide mechanisms resulting in the observed dependence $J_c(d)$
- Additional pinning centers, dead layers or size effects?
- Different mechanisms for zero-field and in-field J_c
- Self-field limitations
- 2D-3D dimensional crossover in single-vortex and collective pinning

Add more YBCO, but I_c does not increases.

 $I_c \propto \sqrt{d}$ (low fields) $I_c \propto const$ (high fields)

SIZE EFFECT IN COLLECTIVE PINNING

- 3D-2D pinning transition if $d < 2L_c : L_c \longrightarrow d$
- High-field thickness dependence (Kes and Tsuei, Brandt):

$$J_c \cong n_p U_p^2 / Br_p c_{66} d \propto 1/d, \qquad I_c(d) = const$$

• Dimensional crossover in collective pinning (Wordenweber & Kes, 1986)

$$d[\mu m] < d_c \approx 2B^{1/4} [Tesla] / \sqrt{J_c} [MA/cm^2]$$

For B = 1T, and $J_c = 1MA/cm^2$, this yields $d_c \approx 2\mu m$

SINGLE-VORTEX PINING IN A FILM

$$\phi_0 J_c d \cong \frac{f_p}{\sqrt{N}} \times \frac{r_0}{l} \times N$$

$$J_c \cong \frac{U_p}{\phi_0} \sqrt{\frac{n_p}{d}}$$

- Rigid <u>infinite</u> vortex in a random potential:

 PINNING FORCE = 0
- Rigid <u>finite</u> vortex in a film: pinning force is FINITE.

 $N = d/I_i$ is the number of pins per vortex, I_i is the pin spacing, $n_p = I_i^{-3}$, $U_p = f_p r_0$ is the pinning energy

Effect of thermal fluctuations

Fluctuating vortex in a pinning potential

$$\eta \dot{x} = \phi_0 J - \phi_0 J_c(d) \sin kx + \zeta(t) / d$$

Same Eq. as for a Josephson Junction gives the exact E-J characteristics (Ambegaokar & Halperin, 1968)

$$\varepsilon = t(1 - e^{-\pi\beta\alpha/t})/\alpha D, \qquad D = \int_{0}^{\pi} e^{-\pi\beta\alpha\theta/t} I_{0} \left(\frac{\sqrt{\alpha}}{t} \sin\theta\right) d\theta$$

Dimensionless parameters

$$\varepsilon = \frac{E}{\rho_F J_0}, \qquad \alpha = \frac{d}{d_0}, \qquad \beta = \frac{J}{J_0}, \qquad J_c = J_0 \sqrt{\frac{d_0}{d}}, \qquad t = \frac{\pi k_B T}{J_0 \phi_0 d_0 r_p}$$

Current-voltage characteristics

- Exact E(J) as a function of T,H and d
- Thermal fluctuations broaden E(J) and reduce J_c
- Define $J_c(d)$ at a given electric field criterion
- $\epsilon_c = E_c/\rho_F J_0 = 10^{-5}$ for $J_0 = 1$ MA/cm², $E_c = 1$ μ V/cm, and $\rho_F = 10$ $\mu\Omega$ cm

Thickness dependence of J_c

• Effective temperature:

$$t = \frac{\pi k_B T}{\phi_0 J_0(T, H) d_0 r_p(T)}$$

- Maximum at d = d_m due to competition between pinning and thermal fluctuations
- As T and H increase, d_m increases
- Reveal the peak in $J_c(d)$ at higher H and T

Conclusions

Low T and H

Distinctive features of the 2D pinning:

- 1. Square-root dependence of I_c(d) at low H
- 2. Maximum in $J_c(d)$ at higher T and H
- 3. The maximum in $J_c(d)$ at higher T and H distinguishes the pinning size effects from microstructural factors (dead layers, etc).

